Adsorption

December 2014
Nanosized objects have a large surface area

Dividing the size of an object by 2...

... doubles the accessible surface
Adsorption ≠ Absorption

Absorption is a phenomenon that occurs in a volume

Adsorption is a phenomenon that occurs on a surface

The word sorption encompasses both types of phenomena
Adsorption of methylene blue from bentonite

https://www.youtube.com/watch?v=3xDjTEv9D1o
Applications of adsorption
Making charcoal at the Jack Daniel Distillery, ca. 1920-1935
Estimate an order of magnitude of the specific surface area of carbon blacks
Orders of magnitude

Figure: 1kg of active carbon has a surface of about 10^6 m2, i.e. 10^{26} A2;

One generally assumes that a molecule of nitrogen occupies a surface of about 16 A2;

The total number of molecules needed to cover the surface of 1 kg of carbon black is therefore roughly 10 mol;

This is 220 l of gas STP i.e. the volume of 22 buckets of gas
Adsorption isotherm (liquid phase)

Amount adsorbed vs concentration

Chemical potential

Dye adsorption in peat
N molecules adsorb on a surface with a total of A adsorption sites. The binding energy per molecule is \(u \).

What is the chemical potential of an adsorbed molecule?
The Langmuir model

Figure VIII–3: On a given surface with A adsorption sites, there are a) $\Omega_1 = A$ different configurations with $N = 1$ molecules, b) $\Omega_2 = A \times (A - 1)/2$ configurations with 2 molecules, and c) in general $\Omega = \binom{A}{N}$ for N adsorbed molecules.

$$S = k_B \ln(\Omega)$$

$$\Omega = \binom{A}{N} = \frac{A!}{N!(A - N)!}$$
Chemical potential of adsorbed species

\[\mu_{ads} = u_a + k_B T \ln \left[\frac{N}{A - N} \right] \]
Gas-phase Adsorption Measurement (volumetric device)

gas inlet (adsorption)

To vacuum (desorption)

valve

valve

pressure gauges

P

calibrated piston

thermostat (liquid nitrogen)

sample
Building up the isotherm

The pressure decrease following each piston injection results from the adsorption of a measurable quantity of gas.

The adsorption isotherm is obtained by plotting the cumulated quantity adsorbed against the equilibrium pressure.
A rule of thumb

The lowest surface you can accurately measure with nitrogen adsorption on a volumetric device is 20 m².

That figure can be reduced to, say 1 m² if an adsorbate with lower condensation pressure is used (e.g. 2 mm Hg for Kr at 77K).

In the case of silica spheres, the surface to volume

\[
\frac{S}{m} = \frac{6}{2 \times 10^6 [g/m^3] d [nm]}
\]

For a sample of about 1g, the largest measurable particle is about 100 nm across.
Gas-phase adsorption

Figure VIII–9: Example of nitrogen adsorption at 77 K measured on a carbon nanotubes sample. Note the different shape with respect to the type I isotherms described by Langmuir’s equation.
Adsorption-desorption isotherm

Surface phenomena

Pore-filling phenomena

Chemical potential
Adsorption Lexicon

- Adsorbent: The solid itself (e.g. carbon black, silica, etc.);
- Adsorbate: The adsorbed gas (e.g. nitrogen, krypton, argon, etc.);
- Mesopore: A pore having a size from 2 nm to 50 nm;
- Micropore: A pore smaller than 2 nm;
- Macropore: A pore larger than 50 nm.
INTERNATIONAL UNION OF PURE
AND APPLIED CHEMISTRY

PHYSICAL CHEMISTRY DIVISION
COMMISSION ON COLLOID AND SURFACE CHEMISTRY*
Subcommittee on Characterization of Porous Solids

RECOMMENDATIONS FOR THE
CHARACTERIZATION OF POROUS SOLIDS
(Technical Report)

Prepared for publication by the Subcommittee
on Characterization of Porous Solids, consisting of

J. ROUQUEROL, (France, Chairman); D. AVNIR (Israel); C. W. FAIRBRIDGE (Canada);
D. H. EVERETT (UK); J. H. HAYNES (UK); N. PERNICONE (Italy); J. D. F. RAMSAY (UK; France);
K. S. W. SING (UK) and K. K. UNGER (FRG).
The 6 types of isotherms according to the IUPAC classification

I: microporous solids

II & III: multilayer adsorption in non-porous solids

IV & V: capillary condensation in mesoporous solids

VI: stepped adsorption
Type II & III isotherms: multilayer adsorption on non-porous solids

Progressive adsorption with no hysteresis

Nitrogen on closed MWCNTs
Multilayer adsorption
the BET equation (1938)

From I. Hargittai,
The Martians of Science
Oxford University Press

Left: The three scientists of the B.E.T. equation, Paul Emmett, Stephen Brunauer, and Edward Teller, on the occasion of a later reunion. (Courtesy of Wendy Teller and Paul Teller.)
The BET equation

The assumptions of the BET equation are:

1) Adsorption occurs layer by layer;
2) Molecules in the first layer interact with the solid & molecules in the following layers behave as in bulk liquid;
3) Lateral interactions between adsorbed molecules are neglected.

\[W = W_0 \left(\frac{C \frac{P}{P_0}}{1 - \frac{P}{P_0}} \left(1 + \frac{(C - 1)P}{P_0} \right) \right) \]

where \(W \) is the amount adsorbed at pressure \(P \), \(W_0 \) is the amount needed to cover the total surface with a monomolecular layer (or monolayer), and \(C \) is a parameter related to the energy of interaction between the adsorbent and adsorbate.
BET adsorption isotherms
The equation is rearranged as

\[\frac{P / P_0}{W(1 - P / P_0)} = \frac{1}{CW_0} + \frac{C - 1}{CW_0} P / P_0 \]

When the left-hand-side is plotted against \(P/P_0 \), a straight line is expected, which enables to determine \(W_0 \) and \(C \).

The volume of the monolayer is converted to a specific surface area \(S \) by assuming that each molecule in the monolayer occupies a given surface (16.2 A\(^2\) for nitrogen).
Examples of BET plots

A « real » non-porous solid

A mesoporous solid

A microporous solid